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ABSTRACT

A new adaptive finite-difference scheme for scalar hyperbolic conserva-

tion laws is introduced. A key aspect of the method is a new automatic mesh

selection algorithm for problems with shocks. We show that the scheme is

L -stable in the sense of Kuznetsov, and that it generates convergent

approximations for linear problems. Numerical evidence is presented that

indicates that if an error of size c is required, our scheme takes at most

O( - 3 ) operations. Standard monotone difference schemes can take up to

O(C- 4 ) calculations for the same problems.
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SIGNIFICANCE AND EXPLANATION

Certain problems in gas dynamics, oil reservoir simulation and other

fields can be modeled by hyperbolic conservation laws, a class of partial

differential equations. The solutions of such problems are typically made

up of smooth surfaces separated by discontinuities, or shocks. Usually,

less information is needed to specify the solution in the smooth regions

than in the shock regions.

In this paper we introduce' a stable finite-difference scheme for con-

servation laws that incorporates a time-varying, nonuniform computational

mesh. At any given time, -m mesh selection algorithm chooses a mesh based

on the approximation calculated up to the time. The algorithm uses know-

ledge of a solution's structure to reduce the number of meshpoints in the

regions where the solution is smooth. This reduces the method's computa-

tional complexity while maintaining full accuracy. 4W prove.that etr

method is stable for the complete nonlinear problem, and that it converges
4 A.-

for linear problems. 4fe gie examples where-4Aw method is asymptotically

faster than previous ones.
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A Stable Adaptive Numerical Scheme for Hyperbolic
Conservation Laws

*

Bradey J. Lucter

1. Intrduton

Our focus in this paper is the efficient solution of the hyperbolic conserva-

tion law

U+f(U), =0. ER, t>O, (C)
U(XO) = UD(Z).

We use an adaptive finite-difference scheme that takes advantage of the struc-

ture of the solution of (C) to reduce its computational complexity. We consider

the scalar case u(z,t)ER For the general nonlinear problem. we offer numeri-

cal evidence that there is asymptotic improvement in the rate of decrease in

the error as a function of computational complexity. For linear problems we

prove that a version of our method converges if the initial data is sufficiently

smooth.

Our method is, generally speaking, a viscosity method. The class of mono-

tone finite-difference schemes for conservation laws are also viscosity methods.

Monotone schemes have been analyzed by Harten et al (12]. Crandall and Majda

[5], Kuznetsov [15], Sanders [19], and Lucier (16]. These schemes converge to

the entropy weak solution of the conservation law (C), as formulated by Kruzkov

[14]. Kuznetsov provided a general theory of approximation for approximate

solutions of (C). f-ie used this theory to provide error esLimaLcs for [Iotiotorle

Division of Kathematical Sciences, Purdue University, V. Lafayette, IN
47907.

Sponsored by the United States Army under Contract No. D&AAG29-80-C-0041.
This material is based upon work partially supported by the National
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differene methods for problems in arbitrary space dimensions using uniform

grids and local difference operators. His techniques were used by Sanders and

by Lucier to provide error estimates for difference schemes with nonuniform

meshes and nonlocal difference operators respectively. Sanders' paper provides

a lucid treatment of Kuznetsov's theory.

One of the considerations in developing our algorithm was that it must exhi-

bit nonlinear stability properties similar to those of monotone finite-difference

schemes. Our approach may be conceptualized as follows. We take a uniform

mesh in [a,b ]x[O, T] with a mesh spacing of At. Meshpoints are removed from

the mesh where they are not needed to achieve the required accuracy. A stan-

dard finite-difference operator is used to advance the approximate solution from

one timestep to the next. (Special techniques are used when the meshes differ

from one timestep to the next.) Our method differs from previous ones in the

algorithm for choosing the mesh, the interpretation of the approximate solution,

and our specific choice of finite-difference operator.

Other adaptive methods have been devised for evolution equations. Davis

and Flaherty's algorithm [6] for the solution of evolution equations is designed

to solve smooth problems without shocks. They use an L2 analysis to choose

their mesh and to provide an error analysis for some problems. Our algorithm is

similar to theirs, in that it tries to equidistribute a measure of the error among

the meshpoints. However, we use an L I analysis, since the solutions of (C) are

stable in LI , but not L2.

Other general algorithms for evolution equations were proposed by Miller

[17] and Dupont [9]. Dupont supplies convergence analyses for his methods.

These algorithms are mainly finite element algoriLhms that couverge well for

solutions that are stable in L2. Since the solutions of (C) are stable in LI it is not

immediately clear whether such algoriLhans are useful for approximating (C).

4,
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Gannon [11] introduced an adaptive finite-element method for parabolic

differential equations based on theory for elliptic equations.

Our algorithm was also motivated by the work of Sanders [19], Douglas [7],

and Douglas and Wheeler [8] on monotone finite-difference schemes with nonuni-

form grids. Sanders and Douglas provide convergence results for such methods

with a fixed grid, while Sanders gives an error estimate of O((h + At)%), where h

is the largest meshsize and At is the timestep. Douglas and Wheeler introduce

an algorithm that uses grids that may change from one timestep to the next, a

true adaptive mesh method. They prove that the solutions of their algorithm

converge to the entropy solution of the conservation law. They do not provide an

error estimate. We compare their method with ours in the final section.

When Sanders, Douglas, and Douglas and Wheeler considered a nonuniform

mesh, they interpreted their numerical solutions as piecewise constant in z. and

they used a conservative finite-difference operator that is, in general, incon-

sistent everywhere. As a consequence, max(zt -zj_)/At must be bounded to

achieve stability in time in [8]. Since our method can have arbitrarily large spa-

tial increments, depending on the smoothness of the solution and the nonlinear-

ity of f , we made a different choice. Our method interprets the soluLion of the

numerical problem as a piecewise linear function, to take advantage of at least

some smoothness in the solution. We also use a consistent, but nonconservative,

difference scheme. (Because of the details of the scheme, it is still conservative

near shocks.) Section 4 contains partial results that bound the mass error in a

reasonable way.

Adaptive numerical methods for hyperbolic conservation laws have previ-

ously been considered by Oliger [10J and his students. iludutromu and lRudriguc

[13] is a survey of some of the techniques that arc used. Bolstad 12] presents a

framework for methods in one space dimension. His scionics incorporate
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locally varying, recursively defined, space and time increments. He uses

Richardson extrapolation to estimate the local truncation error of the finite-

difference scheme. The estimated truncation error determines the local grid

size. Berger [1] extends Bolstad's work to two dimensions. Among other things,

she deals with the strictly two-dimensional problems of shock capturing. subgrid

orientation, and overlapping grids.

The stability analyses in these papers are L2 analyses, and their motivation

seems to be the accurate approximation of smooth solutions of systems of linear

conservation laws. Our motivation is the solution of nonlinear problems with

shocks, and, in dealing first with the scalar equation, we use a L1 analysis.

Instead of finding a general framework for the such methods, we use a specific

finite-difference operator and mesh selection criteria.

Oliger and his students employ locally varying timesteps as well as spatial

mesh increments; we do not. We could have used locally timesteps. but we were

not able to prove stability and convergence results for these methods. Since

asymptotic improvement in convergence rates can be exhibited with fixed

(small) timesteps, local timesteps were not used. When locally varying

Umesteps are used, our algorithm's implementation is very close to Bolstad's.

The rest of the paper is as follows. Notation and preliminary results com-

plete this section. Section 2 briefly describes the finite-difference operator used

here. Section 3 presents the mesh selection algorithm, and proves certain use-

ful properties about the resulting mesh. Section 4 contains proofs of the non-

linear stability of the algorithm. Section 5 shows that a variant of our methods

converges for solutions of linear problems. Section 6 details our implementa-

Lion of Lho algorithm, and Section 7 describes our computaLiutal results.

The V V seminorm of a function u is defined as IUIBV(s)=fIu'(Z)I dc.

where the integrand is interpreted as a finite measure. The set of all such
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Sfunctions is denoted by BV(R). If u is in BV(R), then there exist two bounded

functions, u* and u- such that u =u*+iu- and u4 is nondecreasing. u- is nonin-

creasing. We define ut = u+ -u - , the total variation function of u.

Throughout the paper we assume the normalization that JIf [ILO- 1. This

can always be achieved with a change of the time scale, and is used only for con-

venience in stating stability conditions.

2. The Slcite-diference Scheme.

We use a standard upwind-difference scheme to advance the approximate

solution from time t" to t l+ . We are given a suitable mesh, chosen by the rules

in the next section, to represent the solution at time t". It is characterized by

the meshponts z and the values of the approximate solution Ut' at those mesh-

points. We interpret these points as determining a continuous piecewise linear

approximation to u(z,tf). A estimate of the solution at time t n" is calculated

by

__+____ f 4 (Unl-f (Utn) + (Uf 1 -(Ufl 0 (21=, t _1) f.10 -
At he' h(2

for all zi (except the two endpoints of the interval). We have decomposed f into

its increasing (f +) and decreasing (f-) parts. If f is monotone increasing or

decreasing then this method is an upwind difference method. A similar scheme

has been used by Engquist and Osher[10].

The linear interpolant of the values Ut 1 '" at the points zX is a function we

call uh. The mesh selection algorithm of the next section, when applied to ua.

gives us a new mesh x1+1 and function ,,lues Ut4I" for Lhe approximate solution

of (C) at time tn'".

h'llis process is repeated until tin , T.
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. The Mh Slwatwin Alsrtum.

This section describes our mesh selection algorithm. In our implementa-

tion. the mesh at time t m l is built from the mesh at time ti, but the method of

approximation is general and applies to any function with reference to a time-

stepping procedure. We present the algorithm here in its general form.

Our method of mesh selection is similar to well known ones for adaptive

linear approximation[3]. The mesh approximately equidistributes an estimate of

part of the error incurred by the finite difference scheme, thus following

methods used in static problems [4] and other evolution equations[6]. The

method presented here was designed for problems with shocks, while previous

methods were designed for possibly nonlinear problems with smooth solutions.

The problems in [6] succumbed to an L2 analysis, while the conservation

laws that are the target of this method are stable only in L1. The mesh selec-

tion algorithm therefore chooses a mesh that is "right" for L1. Our specific

choice of the mesh will allow us to prove the stability results of section 4, an

important goal.

Let u be any bounded function defined on [a ,64 that is constant outside of

[I,b ], and let c be a small parameter. Choose the mesh according to the follow-

ing algorithm:

ALGOUlCTE M: This algorithm chooses meshpoints at which to approximate an

arbitrary function u defined on [a,b].

1. The meshpoints consist only of the points a and b and the centers of admis-

sible intervals. Admissible intervals are defined by (2) and (3) below.

2. The interval [a,b ] is an admissible interval,

3. For any admissible interval I, let 3I1=zl dist(zf)=itlt'jC-y j<j 11. If IJ Iycl

and

- -i



II flu I + If "(u) lu.'dz- e, (3.1)
I_

then the left and right halves of I are admissible intervals. The above

integral is finite if u. is a finite measure; it is to be interpreted as - other-

wise. Note that 31 is an open interval.

When this algorithm is used for our adaptive method, At=c/ 4, so that

A_<min(4 --z_, )

A minimal interval is an admissible interval that contains no proper admis-

sible subintervals. It is clear that the width of any given admissible interval is

2' (b-a) for some nonnegative k. Also, I I z/ 2. It follows that the mesh is a

subset of

S, = Ja +m 2-(b-a) I m = 0, 1, and(b-a)2- > /4>(b-a)2-h-11

Some lemmas about the structure of the mesh generated by this algorithm fol-

low.

LIMA 3.1. If A and B are two adjacent ninimal intervals, then

2 IBJ -

Proof. We let lB I >2 IA j, and derive a contradiction. Since the width of

any admissible interval is (b-a) 2 -4 for some k>O, I B I a 4 _1A . Consider now

the admissible interval from which A was derived by Step 3, and call it C. Since

C was divided into two admissible subintervals, the integral in Step 3 is greater

than c. However, IBIB 12 CI and 3Cc3B, so that the corresponding integral for

B must also be greater that c, a contradiction to the minimality of B.

///

Except for the two points a and b, the set of meshpoints has the natural

structure of a tre". The point a +b )/ 2 is the root of the tree. You can also think

of the interval (a,r, as ie root of the tree. (Since there is a one-to-one

k Ill _III., -



correspondence between the meshpoints and the set _f admissible intervals, we

will describe the structure of the mesh equivalently in terms of intervals or

meshpoints.) If an interval I is divided into two admissible subintervals by Step

3, then these two intervals are the left and right children of I, and I is their

parent. A meshpoint with no children (the center of a minimal interval) is a

leaf.

LEMA 3.2. Every second ineshpoint is a leaf.

Proof. The statement of the lemma is true after Step 2, and it is left invari-

ant by Step 3.

///

This implies the obvious result that there is a unique covering of [a,b ] with

minimal intervals.

LEMM 3.3. If the set of neshpoints is Ixtd uth !t=zt-ztj___O then

1/ 2_5h/ ht ,_: 2.

Proof. If zx is a leaf, then hi =ht,,. If xz.- and zt+. are leaves, then the

result follows from Lemma 3.1.

/1/

The linear interpolant u, of u is defined by requiring that u,(z )= u(z1 ) for

all xt, and that u. be a linear function between the meshpoints so that u. is con-

tinuous on ra.b ]. The function u, has the following approximation properties

(cf. [31).

lEMMA 3.4.

hI" -,.cI!,[.b,) --<  -a I + E 11U -Ucll,.,¢ (3.2)I minimal
IIl('

Proof. If I = (x,-,,x,+) is minimal and III > c then Step 3 implies that

IIIJ'lu I u. Sc The LI(I) error for linear interpolation at the points xt_1. Xt,

- - -., -
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and z l is bounded by

'1W-ju= I ds iiL32 f 32 e '

Summinig over all I gives the first term in the expression. The second term con-

tains all the intervals not yet considered.

/1/

There are two interesting cases when the second term is known to be small.

LEmA 3.5.

(a) If u is a continuous, piecewAse linear function such that u, is discon-

tinuous only at the points in S,, then the second term in (3.2) is ZeTo.

(b) If u is in BV(R) then the second term in (3.2) can be bounded by

1/2jiuIjBV(n)e. (Here we assume, without loss of generality, that

x 4-h

u (Z) lim -f u(t) dt for all x.)

Proof.

(a) Since u is linear on each half of the minimal intervals I with I Il<E,

= t on these intervals.

(b) It is an exercise to show that luC-ull1(J)<1/2elluIlBV(I). Since u is in

BV(R), we may add these individual bounds to obtain the lemma.

I,'

A few other stability properties will be used in the sequel.

L Ez m A 3.6. Ilu cll1B ct.,o])---I1U IIBV([.bl,. arnd Ilu -llL . ,,b _ 1) 51"= 1'[ .,)'

Proof. It is clear thaL linear inLerpoltLion has these properlies.

i/I

4
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4. Stability Propertes.

The numerical method presented here has several stability properties that

mimic those for conservation laws. In brief, solutions of the numerical method

satisfy a maximum principle, are total variation diminishing, and are stable in

time. Although the numerical scheme is not conservative, one can bound the

mass error for most problems.

Boundary effects will be analyzed in the following way. Outside of [a,b ] the

mesh will be extended so that all the mesh intervals to the left of a are of the

same width as the mesh interval immediately to the right of a, denoted by hu. A

similar extension will be made to the right of b. We assume that the function Uj'

is constant to the right and to the left of [a,b]. The mapping from U4' to Ut 1 is

now divided into three parts: the finite-difference scheme (2. 1) transforms Ut' on

the extended mesh to &''; the values at the points a and b are reset to their

original values; and the remeshing procedure, applied to the mesh values in

[a,b ]. yields 4".

For the method to work properly, some criteria is needed to decide when a

shock or other disturbance is getting too close to the boundary of the interval.

Throughout, we will assume that the minimal intervals adjacent to the boundary

points a and b have diameters greater than c. This is a simple and effective cri-

teria. If this criteria is in danger of being violated, the interval [a,b] is to be

enlarged.

We will follow the development of [13] for many of our proofs.

The following simple lcnima will have important applications.

L.MMA 4. 1. If g is f , / - or ft, and u is the inear intcrplani of ihe poiniL"

(xt", Ui) then
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g( * )-g( ): f()g ' -fl-.I+1f"(u)liv-. (4.1)

Note that this is multiple of the quantity that we use as a subdivision criteria.

Proof. Since g has a bounded, piecewise continuous second derivative,

g(U .U+)g()+ h+Ig'( Ut) h' -  ) + f ( L.,-I)g(u(=)), d.h r l ('tr. C.,.,

Now, g'(u) is bounded by 1, and for z E(zr4+z1 ). g (u). = g "(u)u, since U = 0.

Also, Ig"I is either If"I or 0. The previous equation and a similar one for

g ( L ) can be rearranged and summed to yield

(Ut'+ I) - g ( 117a) :< f Iu.=I + I ( )Iu x

g ' ( - (g (-i4.i

Here we have expressed the difference of the left and right derivatives of u at 4"

as the integral of the second derivative "delta" measure.

The sharper bound

f$ * ( U'=' ) - f +( &T) - f +( CT) - f +( U.0- 1) I+, I, + f - ( Utn+ ) - f - ( Ur ) /f, It ) -f$-(1 -M I

!5 f Ilu. I + If "(u=)14 d- .  (4.2)IXr l /L'+ 14'

may be derived by noting that f = f ++f -, and if the first or second derivative of

f (u(z)) is nonzero at x, then the first and second derivatives of f -(u(z)) are

zero there.

THEOREM 4.1. For aU n > 0. sup Ut' sup Vic.
i

],roof. By EquatioIi (2.1),

Ur'l= Uj'-At f + U 1 ) - f + U -  + f -U1 4 I f
hr'+
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Since f + is increasing, f is decreasing, iL1'1L#,:5 1, and At/h,- 1, the preced-

ing equation yields

U' t t f U -A[ + ( Ut ) - f (U '- I V Ut' V Ut+' +- In f I Ut'- I V Ut"V UIN")-f(U )I

Therefore, the finite-difference scheme satisfles a maximum principle. Reset-

ting the values of Ut' at a and b does not violate a maximum principle. Lemma

3.6 states that the subsequent transformation to 1M+l satisfies a maximum prin-

ciple.

///

THEOREM 4.2. ForarU n>O, jUn!IBV(R) .g U0 jUI(f).

Proof. I we let bft+ = f +(Un) -f +(U,-). then

U+- U, ! = Un - U, -At I. hr 1q, + h

Because f+ and f- are monotone, f 9 =f-+ -f, if t jL <1 and At//1'- 1, we can

take absolute values, and sum:

Up U At _f (Ur) _f(Ut)I+ AtEf 114.1
n At _af'.,

t

Thus the mapping U" -a Un is total variation diminishing. Resetting the values at

the endpoints does not increase the total variation. Since the remeshing pro-

cess is variation diminishing, by Lcmma 3.6, tho thcorem is provcd.

TUE~iOlULI 4.3. U -UL1 (3~~(/ 211 U0Ijav() + (b -a)/ G)AI + 21lt C.

Il'-' ///I(.6j-

45 22 -.. .
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Proof. First, since the mesh is graded,

IIl_ I - U IIL (c1.6, S AtE I ur i - u4i (hr + hF4 1
t 2

t
35 2t I -,"

3At II lBv M.

When the boundary values are restored, we commit an error at the left end-

point of at most At I U" - Un . Under the assumption that the width of the

minimal interval adjacent to a is bigger than e, Step 3 of the mesh construction

allows us to bound the error by Ate.

Finally, we may apply Lemmas 3.4 and 3.5 to yield

II ' - l.Ct.ol (b, -,a) At/ 8.

/1/

Because a consistent but nonconservative scheme is used for the time stepping,

there will, in general, be some mass balance error. This error can be bounded

by the following theorem.

THEOREM 4.4. Assume [a.b]= USIUURi where n-I diqoint regions R are

J J

made up of minimal intervals of width less that ., and are surrounded by n

regions Sj that are covered byj minimal intervals whose width is greater than e.

Assume that there are no more than k minimal intervals in US. Then
j

If U+I - U- d-At(f (u(a)) -f (u(b)))I < At (2ke + (e IIU"IIIu)V(y) (4.3)

Proof. Using Lhc notation of Theorem 4.2, we have

.u+.(xUvl(x)dx
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hr hr~'+~ 2

-~ '(u (a)) + f-(u (a)) -(f +(u (b))+ f-(u (b)))] -( aut+ f

We will show that the first sum minus 1/2(f (u (a)) -f +(u (b))) can be bounded

as in the statement of the theorem.

Pick a particular Sj with left and right endpoints z and a, and consider the

sum

5 'n 1 (4.4)

Since every minimal interval contained in Sj is more than c wide, Step 3 of Algo-

rithm M and Lemma 3.5 show that (4.4) is equal to

I*. + I + 1 :--+ -

where IMI is less than c (r-+1).

Any interval R consists of minimal intervals of width less than t. Perforce,

all the intervals must have the same width. Thus, if zg and zr are the left and

right boundaries of R1 ,

Matching these results gives

I- = E _M-.' + M + (8fr+It- h+). (4.5)

Here, MI 2k:c, since U S is covered by k minimal intervals. The remark fol- f
lowing Lemma 4.1 implies that the same bound holds when the terms incorporat-

ing f- are also included. The first suUi on the right of (4.5) is uqual to
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f ((b)) -f '(0()).

For the interval Sp. assume I -'I- af'I+: K, for some positive K.

Then, without loss of generality, we may assume that :,-!
h: 2 a.5A'I 8 '

8l~ ft ++1P
and Step 3 of the mesh construction imply that + hr HS 1 If l zS 1 .

Also, hVa e/ 2 for z4FSj. Therefore,

11f +(U")11.qv(Sj 2-- C/ " (Kl12-i)
t-0

c cK1218

Thus. the last sum in (4.5) is bounded by

/2 K1 : (2 z m)M(e/ 8 K)M
I I

:(2 em1 +(u")(2.&m ))1

Since If +( W")I!ly + ILf -(u )IIDVv < II u IBM, the theorem is proved.

It can be shown that, for piecewise smooth functions, Algorithm M generates

fewer than KO 3 meshpoints, for some K (cf. de Boor[3]). If this bound is

assumed throughout the calculation of u, Theorem 4.4 bounds the mass error

at a fixed time T by a multiple of ct or AtM. The expected rate of convergence of

the method is O(At*).

Unfortunately. we have not been able to calculate an a priori bound on the

number of meshpoints in a mesh generated by Algorithm M. If the function u, is

rough enough, C- mushpoints may be needed to approximate it. The numberi k

and m can be calculated during the course of the algorithm in a netligible

amount of computer time, however, and (4.3) may be used as an a posteriori

bound.
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Theorem 4.4 does not consider the mass error generated by the adjustment

of the function values at the points a and b. Theorem 4.3 shows that this error

is O(At) if the minimal intervals next to a and 6 have width greater than C.

Estimate (4.3) does not include the mass error caused by the remeshing

process. Such an error occurs when admissible intervals in the mesh at time t"

are no longer needed, and do not appear in the mesh at time t" +1 . Lemma 3.4 is

sharp for any given time step; the mass error for a time step of size At can be

comparable to At. Using this bound over the interval [0, T] gives an estimate of

an 0(1) mass error, a totally unacceptable result.

Computational experience with piecewise smooth solutions of the

differential equation has shown that over the interval [0, T] there is a constant C

such that fewer than C 2 t intervals of width 2-
t (b-a) are removed from the

mesh in [0, T]. That is, a minimal interval is not subsumed into a larger minimal

interval for a period of time proportial to the its width. If this property holds, an

argument similar to that of Lemma 3.4 shows that the mass error due to mesh

changes on [0, T] is bounded by CAtlog(At - ) for some C. We therefore have the

following theorem.

THEOREM 4.5. For an interval [0,T], assume that there atre constants C1 , C2,

and C3 such that for any e>O

(a) there are no more than CIO -) minimal intervals of width bigger than e for

anytf in [0, T],

(b) Miere are never more than C2 disjoint regions covered by ?P*,6,iU1L iitte'iuals

of width less than e, and

(c) at most C32 admissible intervals of width (b-a) 2-1 are removed from the

mesh in [0, T].

7Then tlre exiats a coustant C, depending on C1 , C2 , C3.and IIuIIDV(R), such that
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the mass error of the nuwmerical aprozimatton (2. 1) can be bounded by CAN

The conditions (a). (b), and (c) can easily be checked a posteriort.

5. Convergence for Linear Problema.

In this section we prove that solutions of the linear problem

ug +au, = 0, zx R t>0. (5.1)
u(x,o)=uo(x), zcR

are approximated well by variants of our adaptive mesh algorithm. If the initial

data is in BV(R), a posteriori bounds will be given on the error, and if the initial

uo0data is slightly smoother, with - -EBV(R), a priori bounds are available. For-

mal justification of the mesh selection criteria used in Algorithm M is also given.

Consider first when u0EBV(R). Our algorithm is as follows:

1. Pick c>0, and let u6 =#,uoo. where #c(x) is c-1/2 when Jz Isec/2/2 and 0

otherwise.

2. Using u8 as the initial data, follow the algorithm in Section 2 to find t".

This will be our approximation to us.

duo"
it is easily shown that I 1----Ilv. IIuoJlav , and

*~~~iiIM cugIS"'1 L(3u0 11 I1LBtBM-

The following theorem applies to such problems.

Tnsom= 5.1. I. at each imestep, there are never more than Clc"- 1/ minimal

intervals of uidth greater than c; and i the total Ll([a,b ]) error due to mesh

changes is 0(c1/ 2), then

I u"(t) -u(t)11ll([,. "r CV(t + 1) '=(lluollayoN + 1) (5.2)

Purthermore, the cornpuiatiinIa complexity, of the scheme is 0(c - ;/ 2)



- 18-

Theorem 5.1 gives a posteriori estimates of the error and computational

complexity of the scheme. Our computational experience suggests that the con-

ditions of the theorem are always satisfied. We suspect that the structure of

solutions of the conservation laws ensures this. The computational bound is

better than for standard monotone methods; for these methods the error is

O(Ats12) but the complexity is O(At-).

The proof of this theorem relies on a number of lemmas.

I EMA 5.1. If u, EBV(R) and v is the linear interpolant of u on some mesh,

Ixt 1 then 11,IBMs11.IB(0

Proof. Since vx (x)= 1 fus(t)dt for xc(z_,z), the result follows

immediately.

//

LZM 5.2. If U is generated by Algorithm M and (2. 1), then

II l"11VRQ:!- II U.llBV(B).

Proof. Since (5,1) is linear, V~t= u - satisfies the same difference
ht

equation as U. Hence I1V"+IIBv(J$ 6II' IDv(. By the previous lemma,

1VM+111BvM: - t l+'javtV. The result then follows by induction.

Our analysis views upwind finite-difference schemes for conservation laws in

a seemingly new way. In particular, if UC' and U* are interpreted as piecewise

linear functions, then the equation (2.1) defining U + I is equivalent to the follow-

ing algorithm:

To obtain L4"', shift Up4 to the right by alAt (if a is positive) and interpolate

the shifted function at the points zt'.
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Note that error occurs only in the interpolation process; there is no error in the

values of the U- TJ' themselves if the values of the U4f are exact. This calculation

is illustrated in Figure 1.

Oft-

Figure 1. The error caused by time-stepping.

Proof of Theorem 5.1. We first define v(v)(z)=v(z-At). If

On= Ji (nAt) - U*IILI([s.bJ) then

a. (nIu At) - a( ("-1)III(.o..1) + IUa( U"- - U" IIL,(o.b D

= 1I(u((n -1)ht)) - u( U-1)II,. + 1I( U") - U" IILI[o..)
= en_ 1 + 8an =I

where 8, is the local error Il0(U"-J) - U" 'L c[..A]) We define

6Ln=((4'-U -1 )/hA". Now, from Figure 1,
f(Un)IlLS(C'.,j) = t A tljE- I aat-Ia1 11(5.3)

s 2ahtl F, I5U1'-t-8' 1
hF<VM

By using Lemmas 5.1 and 5.2, one can bound the flrut term by

C~t li ~hhg~gj~ Cc'hloI~u(iA

I ______
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Because of Step 3 of Algorithm M, and our assumption about the number of

intervals of width greater than e, the second term can be bounded by

alt cxCt-'1= Cec" 2At

Thus I- -- (UJ)IIL~c[., < CAt /ll'(1 UolI-V(M+ 1).

Summing this expression over n<_t/At gives one term of (5.2). We have

assumed that EIIUn + - U+ IIL ([,.b )5 Ce3. As stated previously,
n

IIuO-uSI 11I Cht1Ii011BV(1. Lemmas 3.4 and 3.5 show that

IIU° -u ffLl([.b])-<e(b -cz)/32+ 1/2eI[UoIIBV(1. The error bound is proved.

The complexity of the scheme is O(At-IN) where N is the maximum

number of meshpoints in any mesh fztlj, since the amount of work is linear in

the number of meshpoints. By hypothesis, there are fewer than Ce-12 minimal

intervals of width greater than e. Furthermore, since fIum I dz>1 if I <c, there
31

must be fewer than 31/UxlflBv(<3f-" 2flluolBv( minimal intervals of width less

than t. Because every second meshpoint is the center of a minimal interval, the

theorem is proved.

///

We now consider the case when u is smoother. Let

L12 (R) = fuELI(R) nBV(R) I u.BV(R)I.

We define here a modification of Algorithm M for functions in LIA(R).

Algorithm M':

1. The points a and b are meshpoints. The center of every admissible interval

(to be defincd below) is a meshpoint.

2. Tic intcrval [a,b ] is an admissible interval.

3. If I is an admissible interval, 11 I-4At, 31 = I dist(x,I) < I I 1, and
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Ii fu. Ids> IlU'*I
(b- )

then the left and right halves of I are admissible intervals. As before, U is

to be interpreted as a measure.

This new mesh algorithm makes the smallest admissible intervals the same

size as the "average" interval, i.e. when u. is bounded. Since uELI-2 (R), the

very small spatial and temporal mesh increments of the previous method are

not needed. The following adaptive algorithm is therefore a true "smooth solu-

tion'" algorithm.

Our new algorithm is as follows:

(a) Given ua(z), find z0 tsing Algorithm M' and choose Uj° using piecewise

linear interpolation of u 0.

(b) For each timestep: Given meshpoints jzrj' and function values I (,JI defined

at those meshpoints. calculate Ut'" using (2.1). (Equation (2.1) reduces to

the upwind differencing scheme in this case.) Interpreting Ur as a continu-

ous, piecewise linear function, use algorithm M' to find a new mesh Ixt" 1 1

for Ut". and define U"I' on that mesh by linear interpolation of UI'4 .

The following result holds.

ThiEoRD 5.2. Let uoELI'2(R) and u(zt) be the solution of (5.1). If nAt =T,

and LM is the solution of tie adaptive mesh algorithm above, then

Ilu(t) - UnIILI([.,]) < 3 (T + 1)At lluo'lv(B).

Proof As in Theorem 5.1,

jIU"+,-V(Un)Il,(,.,,)-2¢At 2 E I8Ut'1-8UtP-I+aAt E han,-

The first term is bounded by 2aAt2Iluo'Illv(jC because of Lemmas U.i a nd b.2. By

using Stop 3 of Algoritlam M', the second term can be bounded by
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:9 aAt (b - )i "At (I llL )

(b -,,a) 1 '
s tAtjLo'Ijv(m.

Thus II ' - o( U")IIL1([. ])< 3aAt2IluoiIlv(..

Finally, let S be the set of all minimal intervals in the mesh at time t" +'

that are not minimal at time t'. Then, because of Lemma 3.4 and step 3 of Algo-

rithm M'. the expression for the error in the trapezoid rule yields

DES

At211uo'IIBv(V
32(b -a) .1S

32e

Thus, 6: 53At2 (Iuo'(IBv(. After calculating the error caused by the approxima-

tion of u o , the theorem follows by induction.

The same analysis can be used formally for nonlinear problems: estimate

the difference, now nonzero, between the values U(1+ and SM (lIn)(xt), (S.

advances the solution of (C) by time At) and then separately estimate the inter-

polation error as in Figure 1. The error in Ut1* is bounded formally by

At f I f(u (X,t)). I dX + o(Aj 2).( ',

The L' error on (xr_1 ,xtp.) is therefore bounded by (hI."+IW 1)/2 Limes (5.4),

bounded in turn by CAt times the integral ini (3.1).

Thus, if llUx+"Il.v(),+- ClU..'Ilnv(3.1) for each 11,iiuLlial inturvul I, Ldil error

caused by the nonlinearity is of Ihe same order as the error caused by the
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dissipation in the difference scheme. Thus, our mesh selection criteria achieves

a balance between errors caused by nonlinearity and dissipation.

6. Implementation Details.

Our scheme was implemented using the programming language Pascal. The

resulting programs were run on a VAX 11/780 with a floating point accelerator

under the VMS 2.5 operating system and Pascal 1.2 compiler, and under the

Berkeley Unix 4.1 operating system with its Pascal compiler. In this section, we

describe the algorithms and data structures used in our implementation. We

show that the integrals in (3.1) can be evaluated exactly, and hence that the sta-

bility results of the previous section hold without a separate theory describing

the effects of numerical quadrature. We also estimate the computational com-

plexity of the scheme.

The following steps advance the approximate solution from one timestep to

the next. First, the finite-difference formula advances u from t' to t0 +1 on the

mesh Ix'j. Secondly, the integrals in (3.1) are calculated for the mesh Izt]. In

our implementation, the integrals are first calculated over the (open) interval I

instead of 31, and the integral over 31 is constructed when it is needed. Finally,

the mesh 1xz*i is constructed. To do this, the union of the meshes Izmil and

jxzj/" is built up by adding the appropriate meshpoints to jzjj. The values of

the integrals (3.1) are derived for the new meshpoints as they are introduced. A

second pass is made to remove points in IxzI that are not needed in 1xi 1I.

Except for the two meshpoints a and b, the mesh is naturally organized as

a binary tree. This is because it is defined recursively 'y subdividing admissible

intervals into two subitntcrvals at each stcip. Each admissiblc iiiLcrvil (or,

equivalently, the meshpoint at its center) is a nodu in the tree. The interval

[a,b ] is the root of the tree. If an admissible interval is subdivided into two

admissible subintervals, then these subintervals arc the left and right children
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of the interval. A node without children is a leaf, and corresponds to a minimal

interval. Nodes that are not leaves are interior nodes. The parent of an interval

is the admissible interval from which it was derived.

We first describe the information stored in a node corresponding to a mesh-

point xtn at the center of an interval I = (z1 ,z7 ). This information consists mainly

of pointer variables and numeric variables. A pointer variable either points to

the beginning of a block of computer store allocated to a node, or it is nit. A

pointer has the value nil when it points to "nothing", i.e. it does not point to the

memory location of a node. For example. the pointer "parent" would point to

the beginning of the information for the parent node of x?. (The parent pointer

of the root would be nil.) The pointer "left.child" would point to its left child,

etc. The numeric variables contain such information as the value Uj, the value

of the integral (3. 1) on the interval I, etc. Figure 2 contains the description of a

node.

The function f is an auxiliary function introduced to calculate the integral

(3.1) For all CcR f'(C) = If"(1)1. it follows that

(fLP+1f)-fU l , (6.1)

since U; is 0 for all x E(X,,x+1 ). For each minimal interval, use (6.1) to calcu-

ItLe right.itegral and lefL.integral; fur each interior node, lcfL.ncgral and

right.intcgral are the values of this.integral for the left and right children of the

node. For any node, calculate this.integral by adding the difference of the left

and right derivatives of u at the mcshpoint xl to the sum of left.in egral and

right.intcgral.

In each node we have included pointers and nunierical vuriables whose

values can be calculated from already available information. 'or example, in

each leaf node xt' we save hq' and At/h?'. These values are needed often in the.1



Node:
X
u ut"
isaleafI true if this node is a leaf I

left.child. right.child I pointers to l and , if this node is not a
2 2

leaf I
parent I pointer to parent of this node I
isalefthild I true if this node is a left child I
depth I distance, in nodes, from this node to the root node I
left.neighbor. right.neighbor I pointers to zj l- and xtn,.
left.boundary, right.boundary I pointers to z and z, I
left.sibling. right.sibling I pointers to the nearest nodes at the same depth

as xr, to the left and right, respectively, of zrI
this.integral. leftntegral. right.integral the integral (3.1) over (zx,z,),

(xLx), and (zl',z ), respectively
Utn.I-L' -t U,"- Ul'u~ j I IU +  jP -

ut"- IT- I p,, U-" U!
lef t.ux. right.ux I if this node is a leaf, and "" I

fnuxplus. fluiminus. fiuxbar I f (U). f -(U"), f(U) I
deltatoverh. hinverse, criticalvalue I At/ (xi-zi), 1/ (z'-z), e/(zr-)

Figure 2. Definition of a node corrcsponding to xt1 in the interval (xL ,x,).

scheme, and change only when the mesh is changed. Our experience with the

scheme has shown that, on average, less than one node is added to or sub-

racted from the mesh at each time step. Thus, using the saved values reduces

execution time significantly. Because a new mesh is constructed at each time

step, we also require that the structural information necessary to derive a new

mesh be readily available at each node. Again, extra storage reduces execution

time. Since, for many problems, many fewer nodes are necessary to obtain a

satisfactory error with this method than with standard first order methods, the

extra sturage requirements are not deciltud critical.

The special nodeu a and b are the left and right boundarncu of [a,b ], tLhc

root node. in addition, supplemental mlcshpoints are added to the left and to
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the right of the interval [uz,b] so that the pointers left.sibling and right.sibling

will not be nil for any node in the tree headed by[a,b ]. The complete data struc-

ture is shown in Figure 3. The lines in Figure 3 illustrate only the children and

sibling relationships of the nodes.

Figure 3. Sibling and child relationships for Uio mesh points.

Figure 4 presents the procedure crLaic that calculaLes thc ziudiil values

needed to build the new mesh, On each invocation, criteria ealculate~ 1We nodal
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parameters for all nodes in the subtree headed by p. Indirection is indicated by

a caret (-). The with statement means that all unqualified nodal variables belong

implicitly to the node to which the pointer "p" points. For example,

"right.neighbor-.left.ux" refers to p's right.neighbor's left.ux. Each time step,

the nodal values for a and b are calculated first, and then criteria(root) is

called. The following lemma outlines a proof that the procedure is correct.

procedure criteria(p: nodepointer);
begin

with p- do begin
fluxbar := fbar(u);
if isaleaf then begin

left.ux : (u - lcft.neighbor-.u) * hinverse;
left.integral abs(left.ux * (left.neighbor-.fluxbar - fluxbar));
right.ux : (right.neighbor-.u - u) * hinverse:
right.integral:= abs(right.ux 0 (right. neighbor-.fluxbar - fluxbar));
uxx := abs(left.ux- right.ux);
this.integral := left.integral + right.integral + uxx

end else begin I p does not point to a leaf I
criteria(left. child);
criteria(right. child);
right. integral:= rip ht. child^. this integral;
left.integral :=left. chid^. this. integral;

uxx : abs(right.neighbor -left.ux - left.neighbor-.right.ux)
this.integral left.integral + right.integral + uxx

end I if isaleaf then ... else ... I
end I with p- do ...

end; I criteria I

FIgure 4. Procedure for calculating the integral (3.1).

LEMMA 6. 1. Criteria(p) calculates the values of right.integral, leftAnte ,al,

uZ2, and this.integral for alU nodes in the subtrue heazdedt by p. fitrther'vre,

criteria(p) calculates Left.ux and rightuxfor al leaves in the sub tree headed by

P.

Proof. First one shows that f (4'") is calculated for the left and righi boun-

dary points of p before criteria(p) is called. This is easily proved by nuting that

it is true initially for the root node, and that if it is true for p's parent, then it is
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true for p. The proof of the lemma then follows by induction on the height of the

subtree headed by p.

///

For each interval I. the integral (3.1) over 31 will be used to test for two

things:

1 If I is a leaf and I>c, to see whether left and right children of I should be

added to the set of meshpoints, according to the criteria of Step 3 of Algo-

rithm M.

2 If I is not a leaf, to see whether the subtrees headed by the left and right

children of I are still needed in the mesh.

These tests are done on separate passes of the tree. In the first pass, points are

added to 1z1  to obtain IzxtJ Ux 1 J. In the second pass, points are removed

from the union to leave only ,Iz*. Since the set of points that are tested on

each pass are for the most part disjoint (only nodes with newly added children

are tested twice), this two pass algorithm does not add too much to the arith-

metic complexity of the scheme. A one pass algorithm could surely be devised.

An argument similar to to that in Lemma 3.1 shows that, in any mesh con-

structed using Algorithm M, a node's parent will always have adjacent left and

right siblings. If Jzr' UJIzr "I is formed from 141 by adding meshpoints in order

of increasing depth, then this property also holds for all meshes intermediate to

IzP' and 1zfrl ,JlzP'*. Thus, we add nodes to the mesh in a depth first ordering,

and calculate (3.1) for an interval that is a left child, for example, by adding

p-. parent-. this.integral, p^.parent^. left. sibling-.right.integral, and

p-.lcfLt.bowidary ^ .uxx. Figure 5 illustrates the calculation. A similar expression

hulds for nodes that are riglIt children.

The above calculation is the reason that each admissible interval has a

I -
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p+ leA f. l , dr car

VA1 pare n+ 0e+s~n

P)

31
nguft 5. The calculation of the integral (3.1).

meshpoint at its center, and that the integral (3. 1) is calculated over the left

and right half of each admissible interval.

The second pass of the algorithm checks each node with children to see if

the subtrees headed by that node's children are needed to approximate the

function Ut" I well. If not, they subtrees are removed. The nodes are checked

for subtree removal in a depth first order.

Note that our algorithm removes unnecessary subtrees at once, instead of

removing one meshpoinL at a time. In practice, however, we have not not

observed the removal of any but the trivial subtrees consisting of only one node.

We use a simple and efficient memory management scheme. When a node is

no longer needed and is removed from the tree, it is appended to a free list of

nodes. When a node is needed for addition to the tree, it is taken from the free

lizt if the list is not empty. If the frec list is empty, a call to the operating sys-

tern allocates cnoutth storage for the new node.

The complexity of the scheme can be measured by counttin:, the number of

iloating point operations that are done, on average, fur Caelh h1oLCShptint z' at
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each time tm. More operations are performed for leaf nodes than for interior

nodes. We assume that an evaluation of / , f-, or / requires two additions (or

subtractions), two multiplications, and two comparisons. This would be the case,

for example, if these functions were defined as piecewise quadratic functions

over four intervals. Our assumptions yield

Complexiy per meshpoWnt = 17 Addhitio + 9.5 Multications + 7 Cbmprisos.

This may be compared with a complexity estimate of 8 Additions, 4 Multiplica-

tions, and 4 Comparisons for a careful implementation of a uniform mesh algo-

rithm with the same spatial difference operator and At =h. If an arbitrary vari-

able spaced mesh is chosen every timestep. the standard algorithm will require

10 Additions, 5 Multiplications, 2 Divisions, and 4 Comparisons per meshpoint.

This does not include whatever calculations are necessary to choose the mesh.

Thus, the special placement of the meshpoints in our algorithm no more than

doubles the work per meshpoint.

Nonarithmetic operations must be included in any complexity estimate of

these algorithms. It is more difficult to quantify this nonarithmetic complexity,

what may be considered "overhead." We give empirical results in the next sec-

tion that show that the nonarithmetic overhead is the same for the fixed and

adaptive mesh algorithms.

A more serious difficulty in comparing the efficiency of these algorit'ims is

that the fixed mesh algorithm converges at different rates for differing flucs f.

We will find in the next section that for the problem- lor which the fbLcd tCii'h1

algorithm performs relatively well, the new algorithm compares poorly. The

problems for which the flxcd mesh algorithm performs poorly. hcwever, are

solved with surprising success by our algorithm.
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7. C pml oml ut.

The Pascal implementation of our algorithm was run on two Digital Equip-

ment Corporation VAX 11/780 computers with floating point accelerators under

the VMS 2.5 and Berkeley Unix 4.1 BSD operating systems. Both programs use

double precision (64 bit) floating point numbers. We only needed to change real

constants from double precision to single precision notation to move the pro-

gram from VMS to Unix; no other changes were needed.

We chose computational examples to highlight the strengths of our method

as well as point out directions for improvements. The biggest omission was of

problems with smooth solutions. (We did not implement the algorithm for

smooth solutions given in section 5.) It is easily shown that for monotone uni-

form grid methods, the work expended to achieve an accuracy of a at time T is

proportional to 8-2. When given a problem with a smooth solution, the present

implementation of our method will achieve the same accuracy, but will take

timesteps that are much smaller than the average mesh spacing. In fact, the

work for our method will be proportional to a-3. This shortcoming will be taken

up in a broader context later. We have compared the methods for problems with

shocks, contact discontinuities, and expansion waves following shocks. These

comparisons lead us to believe that our method is superior to fixed mesh mono-

tone methods when the discontinuities in the solutions of (C) are smeared

across more than a fixed number of mesh intervals by the monotone schemes.

In these examples, our method is compared with a tinite diflerence schenWt

with a fixed, uniform, spatial grid. This scheme's difference operator is

At h /h

Always At =h to avoid any divisions or multiplicaLions in lhis parL of Lhih. a go-

rithm. A careful implementation of the comparison scheme uses wily two tune-

i
. - -
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tion evaluations, three subtractions, and one addition per meshpoint per

timestep.

For all examples but the sixth. f-=O. so that each difference operator

reduces to the standard upwind-difference scheme. The initial values NO were

chosen to interpolate the initial data u0 at the points ih. The solution of the

fixed mesh method was interpreted as a piecewise linear function taking on the

values Ut" at the points (ih,n At). The difference in LI[a,b I between the approxi-

mate solution and the piecewise linear interpolant of the true solution u(z,t)

was recorded as the error of the both schemes.

Table 1 presents the fluxes f and the initial and final values of u for the

computational experiments. Table 2 contains the errors and execution times,

respectively, corresponding to various values of At. For the purposes of com-

paring the methods, the parameter 6, a measure of the average mesh spacing

where the solution is smooth, is introduced. The parameter 6 has the value VTT

for the adaptive mesh method, and At for the fixed mesh method. Table 3 tabu-

lates an expression of the error as error = Ctizme* and error = C8* for each test.

TABLE 3
ERROR DECAY RATES

Test Adaptive Mesh Fixed Mesh
1 e = .027t- s2 e = .50861'195 e = .033t -49 3  e = .4726.975

2 e .121 t- 2' se  e = .4196"9'5  e = .057t -4 8 7  e = .770690 1

3 e .377t - .4 18  e = 1.664- 1 '0 0  e = .506t -4 99 * = .2466 "B905
4 e .179t - -319  e = .6046 .05 e = .113t - 20 e = 6'3 6-15
5 e .08 2t -3 7 3  e = .338 5.9g  e = .081t - . ?I e = .593 ' 30
6 1e =.091t--38 e =,39781-()4 e =.087t-- 76  a = 6 5 2 6 .74g

See text.

The CPU times in Table 2 are the "user" times reported by the Unix operat-

ing system. The "systumn" time, which nIeasures the time spent by the operat-

in. sy ynLu Lo service the program, was not included. The system tinic varied

greatly, depending on the system usage, so it was not deemed a reliable mncas-

ure of thc muethods' resource needs. The user times corresponded well with the
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TABLE 1
FlUX. INMTIAL A F , ALVALuS O u (.t).

f (u) ,___ _ u ,4)
1 if --51 ifz:5 3

1/4u+u) ifX > 1 ifz >3

-1 if 1-5z<2 iz-2)/3 if2_5z<2+NM
2 1/4(u+u2) 3-z if 2--z:53 0 otherwise

0 otherwise f

3 /2uu(+2,)41z-31 if Ix-31:-1/2

3 /2u u(z+2,4) {0 otherwise

ifl: 1 1 if z:53
4 1/2u 0 ifz>1 0 ifz>3

[l-(l -u)2 iful/2 i if:5 1:
u 2 if u 1/2 0 otherwise 1 - (z - 1)/8 if 1_.z _ 9 - 4N(2

0 otherwise

1 -(l-u)2 ifua>1/2 1i if X:5 1 1 i :
_2u+3u-u/2 ifu:l/2 10 otherwise l-(z-l)/8 if 1_-z-_59-4 4 [-

0 otherwise

CPU times measured on the VMS operating system on a lightly loaded machine.

The error decay rates in Table 3 are bascd on a log-log least squares fitting of

the data. They were calculated from the data in Table 2, but with the full accu-

racy of the data, which is truncated in Table 2.

Test I presents our method in the best light. This is a Riemann problem

with a strong nonlinearity keeping the shock width to within a few of the small

(O(At)) mesh intervals. At the same Lime, the solution is constant outside the

shock region, so only O(-log(At)) meshpoints are necessary to accurately

represent the solution. The result is an error of O(At) with a computational

complexity of O(-At log(At)).

''c;L 2 is perhaps the worst comparison between the fixcd nesh dnd adap-

Live mesh methods. Tihe adaptive method gives no more than O(& ) accuracy in

tle regiuns where the soluLion is SHLtooLh. To do so, it uscs 0(&-1/2) uIcshpoints.
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TABLE 2
COMMATONAL RMULTS

8-1  Test 1. Test 2.
Adaptive mesh Fixed mesh Adaptive mesh Fixed mesh

2 1.252-1 0.12 2.258-1 0.02 2.468-1 0.13 3.419-1 0.02
4 3.237-2 0.88 1.252-1 0.07 1.174-1 1.18 2.079-1 0.07
8 8.093-3 5.25 6.456-2 0.27 5.449-2 8.88 1,119-1 0.28

16 2.023-3 26.33 3.237-2 1.07 3.169-2 58.85 6.276-2 1.07
32 5.058-4 132.65 1.618-2 4.37 1.771-2 383.15 2.852-2 4.48
64 1.264-4 625.68 8.093-3 17.65 9.547-3 2580.93 1.308-2 17.22
128 3.161-5 2988.28 4.046-3 71.25 5.129-3 17678.77 6.782-3 69.95
3-1 Test 3. Test 4.

Adaptive mesh Fixed mesh Adaptive mesh Fixed mesh
2 8.727-1 0.12 1.116-0 0.02 3.611-1 0.10 4.560-1 0.02
4 4.010-1 1.22 8.627-1 0.05 1.904-1 0.88 3.425-1 0.07
8 1.374-1 10.62 6,139-1 0.25 1.022-1 6.45 2.530-1 0.23

16 5.532-2 73.72 3.954-1 1.00 5.429-2 42.57 1.846-1 1.00
32 2.747-2 493.65 2.302-1 4.02 2.942-2 299.60 1.335-1 3.98
64 1.348-2 3168.97 1.229-1 16.07 1.532-2 2235.78 9.592-2 16.00
128 8.091-3 20316.55 6.243-2 64.45 7.898-3 17124.27 6.860-2 64.40
-1 Test 5. Test 6.

Adaptive mesh Fixed mesh Adaptive mesh Fixed mesh
2 1,800-1 0.13 3.924-1 0.02 2.018-1 0.12 4.234-1 0.02
4 8.160-2 0.93 1.795-1 0.07 9.276-2 0.92 1.969-1 0.07
8 4.133-2 6.92 1.393-1 0.27 4.633-2 6.45 1.477-1 0.30

16 2.063-2 38.98 7.100-2 1.12 2.174-2 41.32 7.532-2 1.18
32 1.042-2 238.97 5.131-2 4.45 1.069-2 253.40 5.345-2 4.68
64 5.390-3 1472.12 2.875-2 17.63 5.440-3 1594.37 2.983-2 1.87

128 2.718-3 9701.87 1.590-2 71.07 2.716-3 10267.05 1.644-2 75.70

Coupled with a time step of 0(e), we achieve a complexity bound of O(e-3/), a

decidedly inferior result when compared with the fixed mesh. This predicament

strongly suggests a method where the local timesteps are proportional to the

local meshsize. Such methods have been used by Oliger [ 18), Bolstad [2], Berger

LiJ, and others (see references in [13]). With such a scheme, the error will still

be 0(c1 / 2 ), but the complexity of the scheme will be reduced to 0(t). This is the

same relationship between error size and complexity that applies for the fixed

mesh method, which does surprisingly well for this problem.

When applied to the third Lest problem, Lhu fixed mesh niethod belave, in it

different way when the ineshsize is small than when it is large. This i bccu:u"c ot

the large second derivatives in the oulutiun. The fixed mesh miieLliod ,.ilibitU aii

error of order AV, with a decidedly less than one, when the meshsize iw large
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(greater than 1/ 32). When the mesh size is small, however, the mesh can ade-

quately refine the large gradients and the error is of order At. Because we are

mainly interested in exhibiting "asymptotic" error rates, we have computed the

error for the fixed mesh method for At as small as 1/ 1024, and our error decay

rates in Table 3 are derived from the smaller timesteps.

Test 4 was the problem that motivated the design of the adaptive method.

It corresponds to a contact discontinuity in gas dynamics. The discontinuity is

smeared over O(At-1/ 2) intervals, and the fixed mesh method has an accuracy of

order AtM The time complexity of the fixed mesh method is O(At- 2 ), so the

error of the method is of order t - 114 . The adaptive method puts O(At- 1 / 2 ) inter-

vals of size At near the discontinuity, and the same number of size At 1/ 2 away

from the it. Thus, the complexity of this scheme is of order At- 3/ 2 , and the

error is of order t -1 / 3. In other words, if one wants an error of order c, it takes

order e-4 work for the fixed method, and order c - 3 work for the adaptive

method.

The solutions of Tests 5 and 6 exhibit behavior similar to the solutions of the

Buckley-Leverett equation used as a model in petroleum reservoir simulation

(see Douglas and Wheeler [8]). These solutions consist of a shock followed by a

smooth expansion wave. The shock is not as strong as in the first example. The

fixed mesh solution reflects this, as the shock is smeared over several mesh

intervals, and an accuracy of order AtS/ 4 , instead of At. is observed. The tests

indicate that the relationship between complexity and error is the same for the

adaptive method and the fixed mesh method. Changing the adaptive method to

use locally varying timesteps as well as mesh spacing wuuld dccr 'e the CPU

time greatly for these problems.

The results of Tests 1 through 6 suggest that our new method is effcctivc

when discontinuities in the solutions are smeared across many mesh intervals
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by the fixed mesh method. This happens in particular for problems that have

discontinuous solutions but weak nonlinear fluxes.

An alternate approach to developing an adaptive mesh method is presented

in [8]. There, the motivation is to use an implicit scheme with a large timestep

and to refine the mesh near roughness in the solution. Unfortunately, this stra-

tegy does not asymptotically decrease the error. Heuristically, this is because

one cannot drag a shock or discontinuity across many meshpoints in one

timestep without smearing the discontinuity. This effect is illustrated in Table 4

for two problems. Each problem has the solution u (x) = 1/2 (1-sgn(z-t / 2)).

The fluxes are f(u)=1/2u and f(u)=j/4(u+u 2 ),respectively. Each prob-

lem was run with h, the mesh spacing, equal to At and At. Thus, our choice is

not to adapt the mesh, but to use a uniformly fine mesh. By using a fine mesh

everywhere, our results do not depend on any particular mesh refinement algo-

rithm. For the first problem the error is of order AtI / 2 for both choices of the

mesh. The error for the second method is of order At. Thus, it appears that

spatial mesh refinement, without a corresponding refinement of the temporal

increments, is not effective in solving these problems.

TABLE 4
ERRORS USING IMPucrr METHOD

AtTest 1. Test 2.
h = At2  th = At h =At 2  h = At

0"OO)000 7 110')Oc-01 9.5360oc-01 5.13!?o-01 6 7f7.5C-01
0.2b0000 4.8664c-01 G.8l26,4c-01 2.3904-O1 4. lb2be-01
0.125000 3.1453c-01 4.854c-Ol 1.0772e-01 2.3833e-01
0.0o'2G OO 2.1 120c-01 '3A ',I!--0 1 4.9128c-02 '27," ' r -n'
0 ' 0 1.4,)29e-01 2.4393e-01 2.3'22ie-02 f5.c9-0-2
0.0! :)62t) 1.0124e-01 1.7261c-01 1.1274e-02 3.,443e-02

In the prc%,iuu; juctioin, we showed that the aritinictic complexity of the

itdajptv( , digoritluit w, no Inure than twice that of 1he ii.td point alio-

ri111 p,.r t:iLu h.l)UlL per Liii icstep. The algorithm s d itur . dLiy 11, LCit" il II,)c-

Ii, iiL..tIvnj. hlwvevr The fixed inesh .lorithlin is almost Lrivial to implement,
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while the adaptive method uses sophisticated data structures and pointer mani-

pulation. We therefore set out to quantify the amount of nonarithmetic over-

head in each method.

We proposed to measure the proportion of the CPU time spent in arithmetic

computations as compared with nonarithmetic computations for both imple-

mentations. We had available two VAX's running identical software, one of which

did not have a floating point accelerator (FPA). A simple program consisting

mainly of an equal number of nontrivial memory to register floating point addi-

tions and multiplications was run and timed on both machines. A speedup of a

factor of five was observed on the machine with the FPA. (The effects of cache

memory hits was not considered.) We then compared the CPU times for the

same implementations of the two algorithms on both machines. The ratios of

the CPU times are given in Table 5. Assuming that only floating point operations

were speeded up by the FPA (a faulty assumption, for some integer arithmetic is

also faster), we calculated the fraction of time spent in nonarithmetic opera-

tions by both programs on both machines. For Test 6, with nontrivial f , f-,

and f-, around 90% of the time was spent on nonarithmetic operations on the

machine with the FPA for both problems. The figure is similar for Test 4, with

trivial f 4, f -, and f.

To discover the effects of the Pascal compiler, we implemented the fixed

mesh algorithm in FORTRAN and ran this program on the machine with the FPA.

For some reason, the FORTRAN compiler generated niuch superior code for

index calculations. Function calls were slightly cheaper because the FORTRAN

program, not being block structured, did not maintain a "display" of the

currently acLcOSLblc data areas. The corI£putation time of the IFORTIRAN prouram

wa.j UU; of its Pascal counterpart. This still leaves us with an ovcrhcad figure of

about 0"7%. These tests indicate that the overhead i jimilar, and large, for each
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algorithm.

TABLE 5
NONAnRmIMlC OVERHEAD

Adaptive mesh Fixed mesh
Test CPU time Overhead CPU time Overhead

ratio FPA No FPA ratio FPA No I"PA
4 0.728 91% 66% 0.676 (36% 60%
6 0.699 89% 63% 0.715 907 64%
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